设为首页|加入收藏

导师资源库

首页 > 学科建设 > 研究生教育 > 导师资源库 > 正文

廖志强

发布者:李赛男  时间:2023-12-04 15:43:43  浏览:

基本信息

说明: 廖志强 照片

名: 廖志强

称: 副教授

别:

出生年月: 19880701

所在学科: 船舶与海洋工程、交通运输

博士导师:

硕士导师:

Email zhiqiangliao@126.com

个人简介

廖志强,工学博士,日本三重大学优秀博士毕业生,研究方向为设备状态监测与故障诊断。在国内外学术期刊和会议发表论文50余篇,其中SCI检索30余篇。申请发明专利13项,软件著作权5项,主持、参加国家自然科学基金项目3项、参与广东省自然科学基金项目2项,主持国家重点实验室开放基金1项。获得中国商业联合会科技进步一等奖1次、日本设备管理论文优秀赏2次。“International Journal of Comprehensive Engineering”期刊编委、“中国舰船研究”期刊青年编委。Mechanical Systems and Signal Processing, IEEE Transactions on Industrial Informatics, Ocean Engineering, Measurement, Applied Acoustics, Sensors, Knowledge-Based Systems, ISA Transactions, Reliability Engineering & System Safety, IEEE Access, Expert Systems With Applications, Measurement Science and Technology, Ain Shams Engineering Journal, Scientific Reports, Journal of Vibration and Control, Electrical Engineering, Engineering Research Express, Engineering Failure Analysis等国内外期刊审稿人。

 

工作经历:

2024.01~至今          广东海洋大学                     副教授

2020.12~2023.12       广东海洋大学                      讲师

2019.11~2023.04    日本国立三重大学                  非常勤研究员

2014.04~2016.07    国家光伏产业计量测试中心          光伏计量工程师

2013.07~2014.04    中航八院上海神舟电力有限公司      电气工程师

 

获奖情况:

1. 中国商业联合会科技进步一等奖,2022,排名3

2. 日本设备管理学会论文优秀赏,2022 (2)

研究方向:船舶动力设备状态监测与故障诊断、船舶智能运维、智能信号处理

 

近五年代表性科研成果(论文、专利、专著等)

论文:

[1]. Zhiqiang Liao, Xuewei Song, Hongfeng Wang, Weiwei Song, Baozhu Jia, Peng Chen. Bearing Fault Diagnosis Using Reconstruction Adaptive Determinate Stationary Subspace Filtering and Enhanced Third-order Spectrum [J]. IEEE Sensors Journal, 2022, 21(8), 10764-10773

[2]. 廖志强, 贾宝柱. 基于全息SDP的船舶推进轴系轴承故障诊断研究 [J]. 中国舰船研究, 2022, 17(6): 88-95

[3]. 廖志强,宋雪玮,贾宝柱,尹建川,孔德峰. 基于加权峭度自适应滤波和对称差分能量谱的船舶推进轴系轴承故障诊断 [J]. 广东海洋大学学报,202242(6): 130-136

[4]. Zhiqiang Liao,Baozhu Jia,Defeng Kong,Ran Ji,Xiaoyu Li,Kang Hao. Bearing Remaining Useful Life Prediction Using FNN-based Feature Principal Component and GRNN [C], 2022 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD), 1-6.

[5]. Zhiqiang Liao, Xuewei Song, Baozhu Jia, Peng Chen. Bearing Fault Feature Enhancement and Diagnosis based on Statistical Filtering and 1.5-dimensional Symmetric Difference Analytic Energy Spectrum [J], IEEE Sensors Journal, 2021, 21(8): 9959-9968.

[6]. Zhiqiang Liao, Jia Baozhu. Research on Feature Enhancement in Low-speed Bearing Fault Based on Symmetric Difference Analytic Energy Operator [J]. International Journal of Comprehensive Engineering, 2021, 10(1), 10-20.

[7]. Zhiqiang Liao, Xuewei Song, Baozhu Jia, Dunwen Zuo,Yi Sheng, Peng Chen. Marine Propulsion Shaft Bearing Fault Feature Extraction and Diagnosis Based on Strong Tracking State Principal Component [C]. 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing), 2021, 1-7

[8]. Zhiqiang Liao, Xuewei Song, Baozhu Jia, Peng Chen. Automatic Bearing Fault Feature Extraction Method via PFDIC and DBAS [J]. Mathematical Problems in Engineering, 2021, 2021.

[9]. Zhiqiang Liao, Liuyang Song, Peng Chen, Zhaoyi Guan, Ziye Fang, Ke Li. An Effective Singular Value Selection and Bearing Fault Signal Filtering Diagnosis Method Based on False Nearest Neighbors and Statistical Information Criteria [J]. Sensors, 2018, 18(7), 2235-2256

[10]. Zhiqiang Liao, Peng Chen. A Vibration Signal Filtering Method Based on KL Divergence Genetic Algorithm with Application to Low Speed Bearing Fault Diagnosis [C]. 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), 1-5, Shanghai, P.R. China, 2018.11.19-11.21

[11]. Zhiqiang Liao, Taifu Li, Peng Chen, Shilun Zuo. A Multi-Objective Robust Optimization Scheme for Reducing Optimization Performance Deterioration Caused by Fluctuation of Decision Parameters in Chemical Processes [J]. Computers & Chemical Engineering, 2018, 119, 1-12

[12]. Zhiqiang Liao, Haihong Tang, Shuuji Miyazaki, Daisuke Matsuo, Yuji Yonekura, Ho Jinyama. An automatic bearing fault signal filtering and diagnosis method based on empirical mode decomposition and C0 complexity [C]. Japan Mechanical Society, The 17th symposium on evaluation and diagnosis, Tsukuba, Japan, 2018. 11, 86-90

[13]. 志強、左 時倫、宋 瀏陽、関 照議、陳山 . ショートタイムFFT、周波数領域の特徴パラメータおよび正準判別分析法による軸受複合異常診断法 [J]、日本設備管理学会誌、第29巻、第2号、pp.50-57, 2017.

[14]. Zhiqiang Liao, Liuyang Song, Peng Chen, Shilun Zuo. An Automatic Filtering Method Based on an Improved Genetic AlgorithmWith Application to Rolling Bearing Fault Signal Extraction [J]. IEEE Sensors Journal, 2017, 17(19), 6340-6349

[15]. Zhiqiang Liao, Zhaoyi Guan, Shilun Zuo, Peng Chen. Bearing compound fault diagnosis based on transient impulse extraction and kernel principal component analysis [J]. International journal of comprehensive engineering, 2016, 5(1), 20-30

[16]. Shilun Zuo, Zhiqiang Liao*, Zhaoyi Guan and Peng Chen. Rolling Bearing Fault Diagnosis Based on Robust Principal Component Analysis Filtering and Envelope Spectrum Analysis. International journal of comprehensive engineering, 2016, 5(1), 31-40

[17]. Zhaoyi Guan, Zhiqiang Liao*, Ke Li, Peng Chen. A precise diagnosis method of structural faults of rotating machinery based on combination of empirical mode decomposition, sample entropy and deep belief network. Sensors. 2019, 19(3), 591-609

[18]. Taifu Li, Zhiqiang Liao*. Robust optimization of industrial process operation parameters based on data-driven model and parameter fluctuation analysis. Mathematical problems in engineering, 2019, 2019(1), 1-9

[19]. Haihong TangZhiqiang Liao*Peng ChenDunwen ZuoSheng Yi. A Novel Convolutional Neural Network for Low-speed Structural Fault Diagnosis under Different Operating Condition and Its Understanding via Visualization. IEEE Transactions on Instrumentation and Measurement, 2020, 17(1), 21-34

[20]. Shilun Zuo, Zhiqiang Liao*. Bearing Fault Dominant Symptom Parameters Selection Based on Canonical Discriminant Analysis and False Nearest Neighbor Using GA Filtering Signal, Mathematical Problems in Engineering, 2020, 13, 1-13

[21]. Haihong Tang, Zhiqiang Liao*, Ozaki Yayoi, Peng Chen. Stepwise Intelligent Diagnosis Method for Rotor System with Sliding Bearing Based on Statistical Filter and Stacked Auto-Encoder. Applied Sciences, 2020, 10(7), 2477

[22]. Xuewei Song, Zhiqiang Liao*, Hongfeng Wang, Peng Chen. Incrementally accumulated holographic SDP characteristic fusion method in ship propulsion shafting bearing fault diagnosis. Measurement Science and Technology, 2021.

[23]. Xuewei Song, Zhiqiang Liao*, Peng Chen. Novel Rotating Machinery Structural Faults Signal Adaptive Multi-Band Filtering and Automatic Diagnosis. Mathematical Problems in Engineering, 2021, 2021.

[24].  邱其清, 廖志强*. 基于高斯混合和概率神经网络的舰船柴油机故障诊断方法[J]. 船舶工程, 2022

[25].  Xuewei Song, Zhiqiang Liao*,Baozhu Jia,Defeng Kong,Jinzhang Niu, Rolling Bearing Fault Diagnosis Under Different Severity Based on Statistics Detection Index and Canonical Discriminant Analysis. IEEE Access, 2023, 11: 86686-86696

[26].  Miyazaki Shuuji, Zhiqiang Liao*, Peng Chen. A Transient Fault-signal Extraction Scheme for Bearing Compound Fault Intelligent Diagnosis based on Vibration Signals. WSEAS Transactions on Systems, 2023, 2023(22): 734-744.

[27]. Zekun Wang, Zifei Xu, Chang Cai, Xiaodong Wang, Jianzhong Xu, Kezhong Shi, Xiaohui Zhong, Zhiqiang Liao*, Qing 'an Li, Rolling bearing fault diagnosis method using time-frequency information integration and multi-scale TransFusion network, Knowledge-Based Systems, 2024, 284: 11344-11364.

专利:

[1]. 廖志强,王鑫,宋雪玮,贾宝柱,孔德峰,李笑宇. 一种在随机冲击干扰下的故障诊断方法及系统 [P] 中国,ZL2023 1 0970350.X

[2]. 廖志强,宋雪玮,贾宝柱,孔德峰. 一种故障诊断方法、装置、介质及设备 [P] 中国,ZL 2023 1 0024797.8

[3]. 廖志强,宋雪玮,贾宝柱,尹建川,徐进,纪然. 一种滚动轴承故障诊断的方法、装置、介质及计算机设备 [P] 中国,ZL 2021 1 0175492.8

[4]. 廖志强,肖磊,许奎,马杰,齐巍巍,郝美玭,陈实,李太福,一种基于模糊智能行为模拟的家居环境健康控制方法,2013.10.09,中国,ZL201310220199.4

科研项目

1.        国家自然科学基金青年科学基金项目,52201355 基于特征谐波定向解耦的吊舱式船用永磁同步推进电机故障诊断研究,2023/012025/1230万,在研,主持

2.        复杂系统智能控制与决策国家重点实验室开放基金,基于多源异构数据融合的船舶动力系统故障溯源,5万,2023.01-2024.12,在研,主持

3.        湛江市非资助科技攻关计划项目,基于多源信息深度融合的船舶液压舵机智能故障诊断研究,2022B010492022.7-2024.6,在研,主持

4.        广东海洋大学教育教学改革项目,数字孪生平台辅助沉浸式教学在《轮机故障诊断》课程中的应用研究,PX-9720232292023.10-2025.09,在研,主持

5.        国家自然科学基金面上项目,62272109,面向无人船自主决策的复杂物理信息感知与混合驱动智能计算方法,2023/012026/1254万,在研,参与

6.        国家自然科学基金面上项目,52271361,不确定时空信息驱动的海上船舶气象导航方法研究,2023/012025/1254万,在研,参与